SO
ABORATORY

UNIVERSITY DF CALIFORNIA
Berkeley

Solar Wind Plasma Interaction
with Gerasimovich
Lunar Magnetic Anomaly

Shahab Fatemi'?, Andrew R. Poppe'?, Gregory T. Delory?!?,
Charles Lue3, Mats Holmstrom?3

1. Space Sciences Laboratory, UC Berkeley, CA, USA
2. SSERVI, NASA Ames Research Center, CA, USA
3. Swedish Institute of Space Physics, Kiruna, Sweden

July 23, 2015



Why is it interesting?

- The Moon has small-scale crustal magnetic fields
- Solar wind plasma interaction with lunar crustal fields

- Correlation between crustal magnetic fields and lunar swirls
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Global image of interaction
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- Magnetized electrons reflect at high altitudes
- Heavy ions penetrate deeper

- Ambipolar electric field




Global image of interaction
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Solar Wind potential through ENA observation.
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Modeling plasma interaction with anomalies

- Previous theoretical and numerical works:
* MHD, Particle-in-cell (PIC), and Hybrid

- Here we use:
* Three-dimensional self-consistent hybrid model of plasma
(ions are kinetic particles, electrons are a massless fluid)
[Holmstrom, 2010, 2013].

* include an empirical model of lunar crustal magnetization
Developed by Purucker and Nicholas, 2010.
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Coordinate system & parameters

- Solar wind flows along the surface normal vector (x-axis)
- Solar wind speed is 310 km/s
- Interplanetary magnetic field (IMF) magnitude is 4 nT.

- Proton temperature is ~4 eV, and electron temperature is ~10 eV.

Gerasimovich Crustal Fields
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Model results (medium P )
x=3 km

- Crustal fields are compressed |, (a) Crustal field 90.0 (b) Total B-field 90.0
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Effects of plasma dynamic pressure

- Crustal fields are compressed by the solar wind.
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- Solar wind ions start to decelerate at higher
0 ‘ —altitudes during low dynamic pressures.
- - Electric field closer to the surface (<10 km) is
é stronger for high dynamic pressures.
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- On average, a potential of nearly+300 V forms

at the surface under the Gerasimovich crustal
Altitude [km] fields, which is consistent with observations.

[Fatemi et al., 2015]




Different components of electric field

Electric field in our hybrid model

E=l(—.l,-xB+,u51(V><B)><B—Vpe)
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Different components of electric field

Electric field in our hybrid model
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Convective Hall term Ambipolar
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Electric field in our hybrid model
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Convective Hall term Ambipolar
- Previous works suggested that the Hall Anti-moon ward electric fields
term is the dominant electric field over = 5 o Amtl
the lunar crustal field 1
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- Ambipolar electric field has a ot
noticeable contribution at close
distances to the Moon.
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Summary!

- The first local hybrid simulations for the
solar wind interaction with realistic lunar
crustal field.

- The incident solar wind flux to the lunar
surface is considerably reduced over the
crustal fields.

- The effects of low and high solar wind
dynamic pressures.

- Low P, ~=> deflects plasma
High P, = => reflects plasma

- Anti-moonward Hall electric field is the
dominant electric field, but the ambipolar
electric field has a noticeable contribution to
the electric field at close distances (<3 km)
to the Moon.
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Backup

a) Hydrogen 150eV - 600eV b) Hydrogen 30eV - 100eV
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